Cambridge Mechatronics and poLight Optics Micromovement (CES/PW Pt. 6)

[March 4th, 2023 Corrections/Updates – poLight informed me of some corrections, better figures, and new information that I have added to the section on poLight. Cambridge Mechatronics informed me about their voltage and current requirements for pixel-shifting (aka wobulation).]


For this next entry in my series on companies I met with at CES or Photonics West’s (PW) AR/VR/MR show in 2023, I will be covering two different approaches to what I call “optics micromovement.” Cambridge Mechatronics (CML) uses Shape Memory Alloys (SMA) wires to move optics and devices (including haptics). poLight uses piezoelectric actuators to bend thin glass over their flexible optical polymer. I met with both companies at CES 2023, and they both provided me with some of their presentation material for use in this article.

I would also like to point out that one alternative to moving lenses for focusing is electrically controlled LC lenses. In prior articles, I discussed implementations of LC lenses by Flexenable (CES & AR/VR/MR Pt. 4 – FlexEnable’s Dimming, Electronic Lenses, & Curved LCDs); Meta (Facebook) with some on DeepOptics (Meta (aka Facebook) Cambria Electrically Controllable LC Lens for VAC? and Meta’s Cambria (Part 2): Is It Half Dome 3?); and Magic Leap with some on DeepOptics (Magic Leap 2 (Pt. 2): Possible Answers from Patent Applications); and DeepOptics (CES 2018 (Part 1 – AR Overview).

After discussing the technologies from CML and poLight, it will be got into some of the new uses within AR and VR.

Beyond Camera Focusing and Optical Image Stabilization Uses of Optics Micromovement in AR and VR

Both poLight and CML have cell phone customers using their technology for camera auto-focus and optical image stabilization (OIS). This type of technology will also be used in the various cameras found on AR and VR headsets. poLight’s TLens is known to be used in the Magic Leap 2 reported by Yole Development and Sharp’s CES 2023 VR prototype (reported by SadlItsBradley).

While the potential use of their technology in AR and VR camera optics is obvious, both companies are looking at other ways their technologies could support Augmented and Virtual Reality.

Cambridge Mechatronics (CML) – How it works

Cambridge Mechatronics is an engineering firm that makes custom designs for miniature machines using shaped memory alloy (SMA). Their business is in engineering the machines for their customers. These machines can move optics or objects. The SMA wires contract when heated due to electricity moving through them (below left) and then act on spring structures to cause movement as the wires contract or relax. Using multiple wires in various structures can cause more complex movement. Another characteristic of the SMA wire is that as it heats and contracts, it makes the wire thicker and shorter, causing the resistance to be reduced. CML uses the change in resistance as feedback for closed-loop control (below right).

Show (below right) is a 4-wire actuator that can move horizontally, vertically, or rotate (arrows pointing at the relaxed wires). The SMA wires enable a very thin structure. Below is a still from a CML video showing this type of actuator’s motion.

Below is an 8-wire (2 crossed wires on four sides) mechanism for moving a lens in X, Y, and Z and Pitch and Yaw to control focusing and optical image stabilization (OIS). Below are five still frames from a CML video on how the 8-wire mechanism works.

CML is developing some new SMA technology called “Zero Hold Power.” With this technology, they only need to apply power when moving optics. They suggest this technology would be useful in AR headsets to adjust for temperature variations in optics and support vergence accommodation conflict.

CML’s SMA wire method makes miniature motors and machines that may or may not include optics. With various configurations of wires, springs, levers, ratcheting mechanisms, etc., all kinds of different motions are possible. The issue becomes the mass of the “payload” and how fast the SMA wires can respond.

CML expects that when continuously pixel shifting, they will use take than 3.2V at ~20mA.

poLight – How It Works

poLight’s TLens uses piezoelectric actuators to bend a thin glass membrane over poLight’s special optical clear, index-matched polymer (see below). This bending process changes the lens’s focal point, similar to how the human eye works. The TLens can also be combined with other optics (below right) to support OIS and autofocus.

The GIF animation (right) show how the piezo actuators can bend the top glass membrane to change the lens in the center for autofocus, tilt the lens to shift the image for OIS, and both perform autofocus and OIS.

poLight also proposes supporting “supra” resolution (pixel shifting) for MicroLEDs by tilting flat glass with poLight’s polymer using piezo actuators to shift pixels optically.

One concern is that poLight’s actuators require up to 50 Volts. Generating higher voltages typically comes with some power loss and more components. [Corrected – March 3, 2023] poLight’s companion driver ASIC (PD50) has built-in EMI reduction that minimizes external components (it only requires ext. capacitive load) and power/current consumption is kept very low (TLens® being an optical device, consumes virtually no power, majority of <6mW total power is consumed by our driver ASIC – see table below).

poLight says that the TLens is about 94% transparent. The front aperture diameter of the TLens, while large enough for small sensor (like a smartphone) cameras, seems small at just over 2mm. The tunable wedge concept could have a much wider aperture as it does not need to form a lens. While the poLight method may result in a more compact design, the range of optics would seem to be limited in both the size of the aperture and how much the optics change.

Uses for Optics Micromovement in AR and VR beyond cameras

Going beyond the established camera uses, including autofocus and OIS, outlined below are some of the uses for these devices in AR and VR:

  • Variable focus, including addressing vergence accommodation conflict (VAC)
  • Super-resolution – shifting the display device or the optic to improve the effective resolution
  • Aiming and moving cameras:
    • When doing VR with camera-passthrough, there are human factor advantages to having the cameras positioned and aimed the same as the person’s eyes.
    • For SLAM and tracking cameras, more area could be covered with higher precision if the cameras rotate.
  • I discussed several uses for MicroLED pixel shifting in CES 2023 (Part 2) – Porotech – The Most Advanced MicroLED Technology:
    • Shifting several LEDs to the same location to average their brightness and correct for any dead or weak pixels should greatly improve yields.
    • Shifting spatial color subpixels (red, green, and blue) to the same location for a full-color pixel. This would be a way to reduce the effective size of a pixel and “cheat” the etendue issue caused by a larger spatial color pixel.
    • Improve resolution as the MicroLED emission area is typically much smaller than the pitch between pixels. There might be no overlap when switching and thus give the full resolution advantage. This technique could provide even fewer pixels with fewer connections, but there will be a tradeoff in maximum brightness that can be achieved.


It seems clear that future AR and VR systems will require changing optics at a minimum for autofocusing. There is also the obvious need to support focus-changing optics for VAC. Moving/changing optics will find many other uses in future AR and VR systems.

Between poLight and Cambridge Mechatronic (CML), it seems clear that CML’s technology is much more adaptable to a wider range and types of motion. For example, CML could handle the bigger lenses required for VAC in VR. poLight appears to have an advantage in size for small cameras.

Karl Guttag
Karl Guttag
Articles: 244

Leave a Reply